

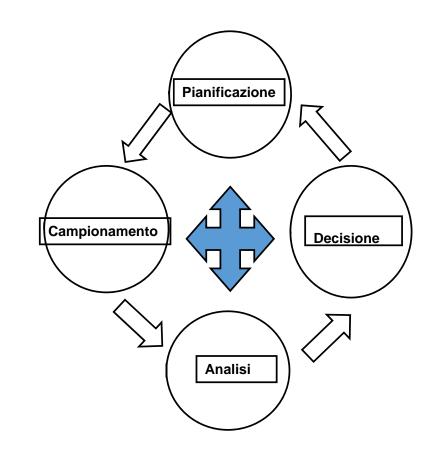
Contaminazione delle acque sotterranee e tecnologie innovative di bonifica in Lombardia Milano, 28 settembre 2015

Metodi di caratterizzazione dei siti contaminati

Giovanni Pietro Beretta
Via Mangiagalli 34 – 20133 Milano

Email: giovanni.beretta@unimi.it

PROCESSO DINAMICO DI CARATTERIZZAZIONE DI UN SITO CONTAMINATO


CARATTERIZZAZIONE DINAMICA DI UN SITO CONTAMINATO

Gestione delle incertezze

Pianificazione sistematica del lavoro

Utilizzo di misure di campo in tempo reale

Strategia per un piano di lavoro dinamico

(U.S. Environmental Protection Agency, 2006 e 2010)

METODI TRADIZIONALI E INNOVATIVI DI DI CARATTERIZZAZIONE DI UN SITO CONTAMINATO

Metodi tradizionali utilizzabili per la caratterizzazione

Ricostruzione del modello geologico del sottosuolo Standardizzazione della restituzione dei dati Necessità di standardizzazione nelle diverse fasi

Metodi innovativi di caratterizzazione di siti contaminati

Metodi geofisici

Metodi di caratterizzazione per composti volatili

Metodi innovativi di caratterizzazione derivati dalle tecniche "direct push"

Metodi innovativi di campionamento di acque sotterranee – tecnica low flow

Metodi di misura flussi idrici verticali nei pozzi

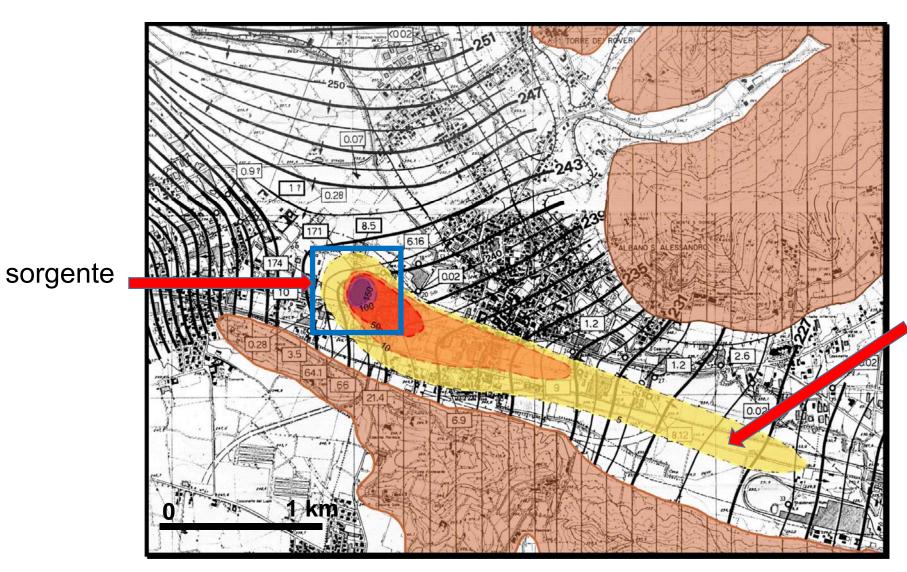
Metodi isotopici

Metodi di caratterizzazione microbica

Metodi di fingerprinting

METODI DI CARATTERIZZAZIONE DI SITI CONTAMINATI

Metodi Tradizionali	Metodi Innovativi
Metodi derivati da consolidate tecniche di indagine geologiche, geotecniche, geofisiche e idrogeologiche	Metodi specificatamente studiati per valutare la qualità ambientale in acqua, suolo e gas interstiziale
Utilizzo nella definizione del modello geologico concettuale del sottosuolo	Contribuiscono alla definizione della distribuzione tridimensionale della
Misure condizionate dall'effetto-scala	contaminazione
Limiti nella definizione del modello concettuale della contaminazione	Riducono il possibile rilevante errore nel campionamento delle matrici
per eterogeneità del mezzo e	ambientali
caratteristiche degli inquinanti	Consentono una progettazione e
Problemi nella predisposizione del progetto di bonifica e nella sua	realizzazione della bonifica più affidabile
realizzazione	Costi più elevati rispetto alle
Costi contenuti di utilizzo	tecniche tradizionali

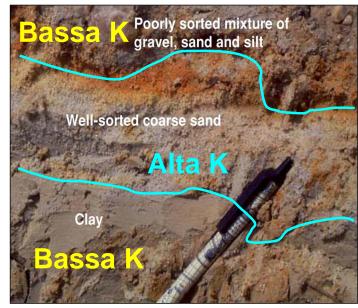

SORGENTE/PENNACCHIO E DISTRIBUZIONE DEI CONTAMINANTI

ELEMENTI DA CONSIDERARE NEL VALUTARE IL DESTINO DEI CONTAMINANTI NELLE ACQUE SOTTERRANEE

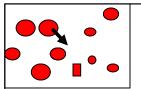
- 1 Sorgente e pennacchio
- 2 Permeabilità dei litotipi in area pennacchio e sorgente
- 3 Fasi (iniziale, intermedia, finale di contaminazione)
- 4 Caratteristiche dei complessi idrogeologici lombardi

Concentrazioni attese per solventi clorurati e Cromo esavalente

ESEMPIO DI PENNACCHIO (PLUME) DI INQUINANTE

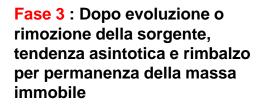


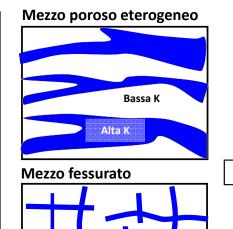
pennacchio


La di contaminante massa complessiva Mtot immessa sottosuolo si distribuisce nelle acque nel modo seguente:

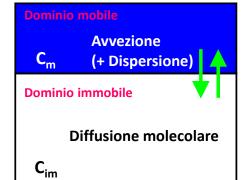
- massa mobile $\mathbf{M}_{\mathbf{m}}$: dovuta al moto avvezione e dispersione idrodinamica;
- massa immobile: M_{im}: dovuta al moto di diffusione molecolare.

DOMINIO DUALE Flussi preferenziali

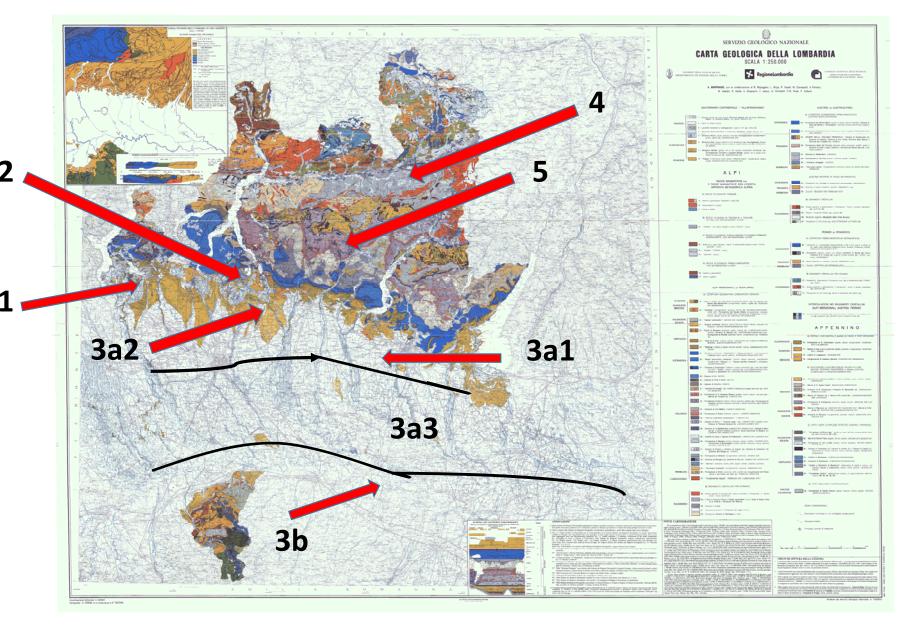



Zheng and Gorelick (2003)

Fase 1: La struttura della porosità concentra i flussi di massa mobile



Dominio a porosità duale



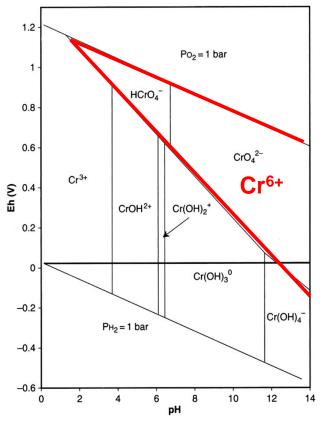
Trasferimento di massa tra i due domini

 $C_{tot} = C_m + C_{im}$

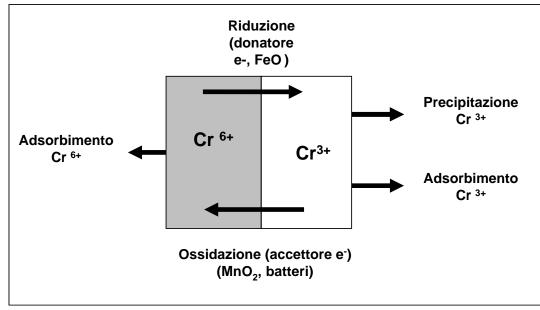
Guan et al. (2008)

COMPLESSI IDROGEOLOGICI LOMBARDI E CONCENTRAZIONI ATTESE DI SOLVENTI CLORURATI E CROMO ESAVALENTE

INDIVIDUAZIONE COMPLESSI IDROGEOLOGICI LOMBARDI

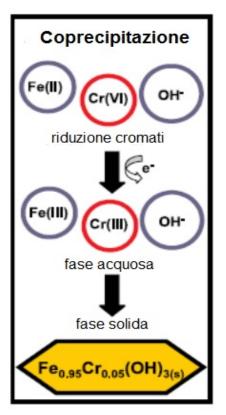

- 1-Depositi glaciali
- 2-Depositi lacustri
- 3a1-Alta pianura 3a2-Terrazzi
- 3a3-Bassa pianura
- 3b-Depositi Po
- 4-Rocce poco permeabili
- 5-Rocce permeabili

SINTESI DI AMBIENTI GEOLOGICI LOMBARDI IN RELAZIONE ALLE CARATTERISTICHE IDROGEOLOGICHE E ALLA MOBILITÀ DEI SOLVENTI CLORURATI


Ambiente deposizionale	Permeabilità (m²)	Conducibilità idraulica (m/s)	Porosità totale (%)	Proprietà
Tipo 1 – Depositi glaciali	k > 10 ⁻¹⁴	K > 10 ⁻⁷	5 - 40	Sensibili variazioni di permeabilità (depositi glaciali, delta, glaciolacustri, etc.)
Tipo 2 – Depositi lacustri	k < 10 ⁻¹⁴	K < 10 ⁻⁷	5 - 40	Bassa permeabilità senza percorsi preferenziali dovuti a permeabilità secondaria dovuta a fratture
Tipo 3a1, 3a2 – Depositi alluvionali con canali intrecciati/anastomosati (alta/media permeabilità).	k > 10 ⁻¹¹	K > 10 ⁻⁵	5 – 40	Litotipi molto permeabili (ghiaie e sabbie) con ridotti orizzonti poco permeabili
Tipo 3a3 – Depositi fluviali meandriformi (bassa permeabilità)	k > 10 ⁻¹²	K > 10 ⁻⁷	5 – 40	Litotipi con media permeabilità (sabbie) con frequenti orizzonti poco permeabili
Tipo 3b – Depositi fluviali meandriformi del Fiume Po (bassa/media permeabilità)	k > 10 ⁻¹¹	K > 10 ⁻⁶	5 – 40	Litotipi con media permeabilità (sabbie) e scarsi orizzonti poco permeabili
Tipo 4 – Rocce fessurate con bassa porosità della matrice	k < 10 ⁻¹⁷	K < 10 ⁻¹⁰	< 1 (per fratture e matrice)	Molto bassa porosità della matrice e permeabilità dovuta alle fratture (ad esempio rocce cristalline e calcareo marnose)
Tipo 5 – Rocce fessurate con alta porosità della matrice	k < 10 ⁻¹⁷	K < 10 ⁻¹⁰	< 1 (fratture) 1 – 40 (matrice)	Sistemi di fratture e cavità nella matrice cavità –(calcari, dolomie, rocce evaporitiche)

Potenziale distribuzione dei solventi clorurati nei principali complessi idrogeologici lombardi

		FASE INIZIALE	FASE INTERMEDIA	FASE FINALE	
sorgente e pennacchio permeabilità	TIPO1	Sorgente	Zone	Zone	SOLVENTI CLORURATI assente 0 non impattata 1 1 ug/l 2 10 ug/l 3 100 ug/l 4 1000 ug/l
fasi	TIPO2	Zone	Fase Sorgente Pennacchio Permeabilità bassa alta alta bassa Gassosa 0 0 0 Separata 3 Acquosa 3 2 Adsorbita 3 3	Fase Sorgente Pennacchio Permeabilità bassa alta alta bassa Gassosa 0 0 0 Separata 2 Acquosa 3 2 Adsorbita 3 3	
complessi idrogeologici	TIPO 3A1	Zone	Zone	Zone	concentrazioni attese
	TIPO 3A2	Zone Pennacchio Permeabilità bassa alta bassa Gassosa 1 1 2 0	Zone Sorgente Pennacchio	Zone Sorgente Pennacchio	
	TIPO 3A3 e 3B	Sorgente	Sorgente	Zone Sorgente Pennaαchio	
	TIPO 4	Zone	Sorgente	Zone	
	TIPOS	Zone	Zone	Zone Sorgente Pennacchio	



CONDIZIONI GEOCHIMICHE DI BASE E PRESENZA DI CROMO TRIVALENTE ED ESAVALENTE

La presenza di batteri e di **MnO**₂ consente l'ossidazione da Cr³⁺ a Cr⁶⁺. In alcuni trattamenti circa il 15% di Cr³⁺ precipitato si può riossidare in presenza di ossidi di Mn (Hawley E.L., et al., 2004)

La presenza di ossidi di **FeO** può determinare la precipitazione di un minerale di Fe e Cr

SINTESI DI AMBIENTI GEOLOGICI LOMBARDI IN RELAZIONE ALLE CARATTERISTICHE IDROGEOLOGICHE E ALLA MOBILITÀ DEL CROMO ESAVALENTE

Ambiente deposizionale	Permeabilità (m²)	Conducibilità idraulica (m/s)	Porosità totale (%)	Proprietà idrogeologiche	Condizioni geochimiche generali
Tipo 1 – Depositi glaciali	k > 10 ⁻¹⁴	K > 10 ⁻⁷	5 - 40	Sensibili variazioni di permeabilità (depositi glaciali, delta, glaciolacustri, etc.)	Salvo in paleobacini lacustri, risulta scarsa la componente di sostanza organica. Nei depositi più antichi si hanno in superficie paleosuoli, con ricchezza di ossidi di Fe ³⁺ .
Tipo 2 – Depositi lacustri	k < 10 ⁻¹⁴	K < 10 ⁻⁷	5 - 40	Bassa permeabilità senza percorsi preferenziali dovuti a permeabilità secondaria dovuta a fratture	Nei depositi lacustri si hanno condizioni redox ed abbondanza di materia organica (torbe). Scarso Ossigeno disciolto e presenza di Fe ²⁺ e Mn ²⁺
Tipo 3a1, 3a2 – Depositi alluvionali con canali intrecciati/anastomosati (alta/media permeabilità).	k > 10 ⁻¹¹	K > 10 ⁻⁵	5 – 40	Litotipi molto permeabili (ghiaie e sabbie) con ridotti orizzonti poco permeabili	Nella zona a terrazzi si hanno paleosuoli con presenza di ossidi di Fe ³⁺ ("ferretto"); paleosuoli talora presenti in profondità (argille gialle, argille rosse, etc.). Generali condizioni ossidate con scarsa materia organica
Tipo 3a3 – Depositi fluviali meandriformi (bassa permeabilità)	k > 10 ⁻¹²	K > 10 ⁻⁷	5 – 40	Litotipi con media permeabilità (sabbie) con frequenti orizzonti poco permeabili	Prevalenti condizioni redox, con abbondanza di Fe ²⁺ e Mn ²⁺ nelle acque e talora sostanza organica (torbe). Scarso Ossigeno disciolto
Tipo 3b – Depositi fluviali meandriformi del Fiume Po (bassa/media permeabilità)	k > 10 ⁻¹¹	K > 10 ⁻⁶	5 – 40	Litotipi con media permeabilità (sabbie) e scarsi orizzonti poco permeabili	Prevalenti condizioni redox, con Fe ²⁺ e Mn ²⁺ nelle acque e talora sostanza organica (torbe). Scarso Ossigeno disciolto
Tipo 4 – Rocce fessurate con bassa porosità della matrice	k < 10 ⁻¹⁷	K < 10 ⁻¹⁰	< 1 (per fratture e matrice)	Molto bassa porosità della matrice e permeabilità dovuta alle fratture (ad esempio rocce cristalline e calcareo marnose)	Limitata disponibilità di ossidi di Fe ²⁺ e Mn ²⁺ in fessure. Assenza di sostanza organica. Mineralizzazione a solfuri in area prealpina e alpina. Bassa alcalinità (ad eccezione marmi, calcescisti e calcari marnosi),
Tipo 5 – Rocce fessurate con alta porosità della matrice	k < 10 ⁻¹⁷	K < 10 ⁻¹⁰	< 1 (fratture) 1 – 40 (matrice)	Sistemi di fratture e cavità nella matrice cavità – (calcari, dolomite, rocce evaporitiche)	Minerali di alterazione contenenti Fe e Al, nonché concrezioni di ossidi di Mn. Presenza di solfati in evaporiti. Mineralizzazioni a solfuri in area prealpina

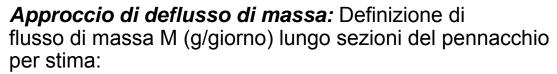
Potenziale distribuzione del Cromo esavalente nei principali complessi idrogeologici lombardi

FASE INIZIALE FASE INTERMEDIA CROMO ESAVALENTE Zone sorgente e pennacchio Pennacchio Sorgente Pennacchio Sorgente Pennacchio assente Fase Permeabilità alta bassa Permeabilità bassa bassa Permeabilità bassa assa bassa alta 0 non impattata 1 ug/l Separata Separata Separata 10 ug/l 100 ug/l Acquosa Acquosa Acquosa permeabilità Adsorbita Adsorbita Adsorbita 1000 ug/l Pennacchio Sorgente Pennacchio Pennacchio alta Permeabilità Permeabilità bassa fasi Adsorbita Adsorbita Adsorbita complessi concentrazioni Zone Zone idrogeologici Permeabilità bassa alta bassa Permeabilità bassa Permeabilità alta bassa attese Gassosa Gassosa Separata Separata Separata Acquosa Acquosa Acquosa Adsorbita Adsorbita Zone Pennacchio Sorgente Pennacchio Sorgente bassa alta Permeabilità bassa Permeabilità bassa alta Permeabilità bassa bassa bassa Gassosa Gassosa Gassosa Separata Separata Acquosa Acquosa Acquosa Adsorbita Adsorbita Adsorbita Pennacchio Sorgente Sorgente TIPO 3A3 e3B Permeabilità bassa alta bassa Permeabilità alta Permeabilità alta bassa Gassosa Gassosa Gassosa Separata Separata Separata Acquosa Acquosa Adsorbita Adsorbita Adsorbita Pennacchio Sorgente Pennacchic bassa Gassosa Acquosa Acquosa Acquosa Adsorbita Adsorbita Adsorbita Pennacchio Sorgente Pennacchio Pennacchio Sorgente Permeabilità bassa alta bassa Permeabilità alta Permeabilità alta bassa bassa alta bassa Gassosa Gassosa Gassosa Separata Separata Separata Acquosa Acquosa Acquosa Adsorbita Adsorbita Adsorbita

PARAMETRI DESCRITTIVI: MASSA E CONCENTRAZIONE DEGLI INQUINANTI

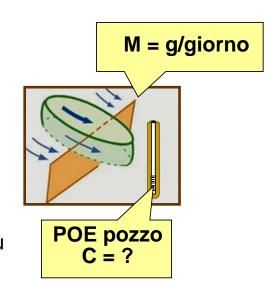
PARAMETRI DESCRITTIVI DELLE CONDIZIONI AMBIENTALI CONCENTRAZIONE - MASSA

Per valutare l'efficacia di un intervento di bonifica è stato da sempre utilizzato il concetto di valutazione dei "limiti finali di concentrazione", mentre sarebbe più opportuno applicare anche un altro concetto costituito da "ordine di grandezza del flusso di massa dei contaminanti".


In questo senso assumono una importanza fondamentale:

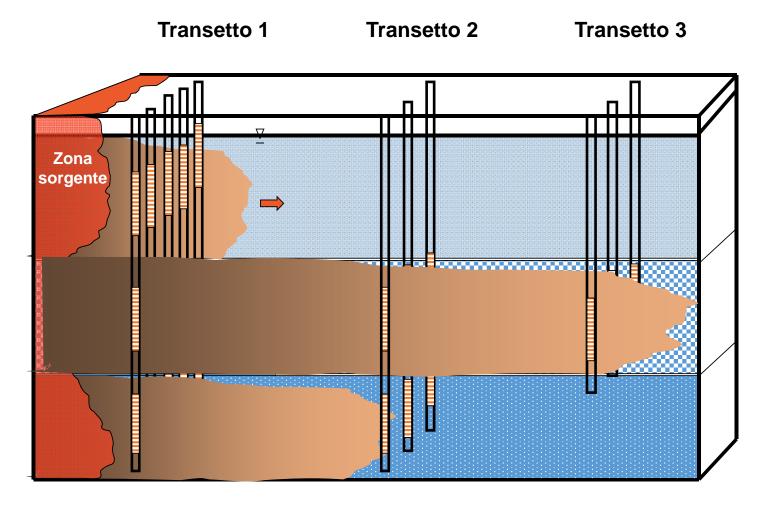
- la **determinazione della massa di contaminanti** sia all'interno che all'esterno (pennacchio) di un sito contaminato;
- il monitoraggio dell'attenuazione naturale e la diminuzione delle concentrazioni e soprattutto della massa di contaminanti a valle di un sito.

CONCENTRAZIONE E MASSA IN UN PENNACCHIO


Approccio tradizionale: Misura concentrazione C (g/m³) pennacchio esistente per stima:

- · Impatto al pozzo recettore
- Aliquota attenuazione naturale
- Interventi di risanamento

- Impatto al pozzo recettore
- Aliquota attenuazione naturale
- Interventi di risanamento
- Priorità di interventi a scala regionale
- Confronto efficacia barriere idrauliche/interventi in situ
- Stima dei tempi di recupero



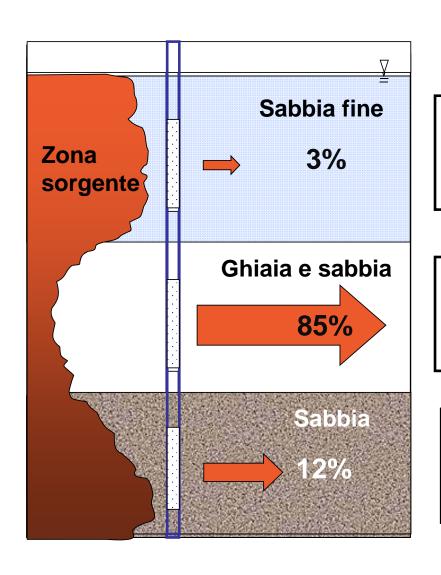
INDIVIDUAZIONE MASSA DEGLI INQUINANTI NEL PENNACCHIO

METODI SPERIMENTALI E NUMERICI PER LA STIMA DELLA MASSA DI UN PENNACCHIO

- 1 Metodo dei transetti
- 2 Dati sperimentali disponibili (isocone di contaminazione)
- 3 Passive Flux Meter
- 4 Integral Pumping Test
- 4 Partitioning Interwell Tracer Test
- 5 Modelli analitici e numerici di trasporto

STIMA FLUSSO DI MASSA - METODO DEI TRANSETTI

$$M = \Sigma (C_n - A_n - v)$$


M = Flusso di massa (g/giorno)

C_n = concentrazione in un poligono sotteso da un piezometro del transetto n (g/m³)

 A_n = area sottesa da un piezometro nel transetto n (m²)

v = K i = velocità di Darcy (m/giorno)

STIMA DEL FLUSSO DI MASSA LUNGO UNA SEZIONE DI ACQUIFERO

Flusso di massa unitario (J) = KiC

K = 1.0 m/giorno

i = 0.003

 $C = 10,000 \mu g/L$

Flusso di massa unitario = 0.03 g/giorno/m²

K = 33.3 m/giorno

i = 0.003

 $C = 10,000 \mu g/L$

Flusso di massa unitario = 1 g/giorno/m²

K = 5.0 m/giorno

i = 0.003

 $C = 10,000 \mu g/L$

Flusso di massa unitario = 0.15 g/giorno/m²

CLASSIFICAZIONE DEI PENNACCHI

CLASSIFICAZIONE DELLE CATEGORIE DEI PENNACCHI solventi clorurati

CON $C_{RECETTORE} = 1 \mu g/L \cong CSC$

Massa scaricata (g/giorno)	Categoria del pennacchio	Esempio di condizioni di flusso che possono potenzialmente impattare pozzi o corsi d'acqua
< 0.001	"Mag 1Plume"	Impatto limitato
0.001 - 0.01	"Mag 2 Plume"	Pozzo domestico (10 m³/giorno)
0.01 - 0.1	"Mag 3 Plume"	Pozzo acquedotto (100 m³/giorno)
0.1 - 1	"Mag 4 Plume"	Pozzo acquedotto (1000 m³/giorno)
1 - 10	"Mag 5 Plume"	Pozzo acquedotto (10000 m³/giorno)
10 - 100	"Mag 6 Plume"	Flusso di base corso d'acqua di 1.16 m³/s
100 - 1000	"Mag 7 Plume"	Flusso di base corso d'acqua di 11.6 m³/s
1000- 10000	"Mag 8 Plume"	Flusso di base corso d'acqua di 115.7 m ³ /s
10000 - 100000	"Mag 9 Plume"	Flusso di base corso d'acqua di 1157.4 m³/s
> 100000	"Mag 10 Plume"	Flusso di base corso d'acqua > 1157.4 m³/s

(da Neville C.J. et al., 2011 modificato)

CLASSIFICAZIONE DELLE CATEGORIE DEI PENNACCHI: Solventi clorurati

CON $C_{RECETTORE} = 10 \mu g/L$ - Acqua potabile

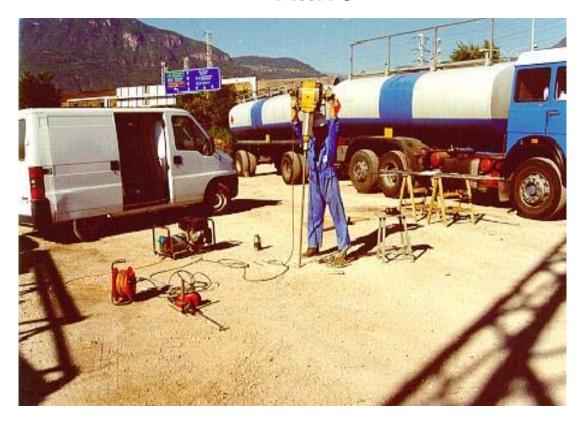
Massa scaricata (g/giorno)	Categoria del pennacchio	Esempio di condizioni di flusso che possono potenzialmente impattare pozzi o corsi d'acqua
< 0.001	"Mag 0Plume"	Impatto limitato
0.001 - 0.01	"Mag 1 Plume"	Impatto limitato
0.01 - 0.1	"Mag 2 Plume"	Pozzo domestico (10 m³/giorno)
0.1 - 1	"Mag 3 Plume"	Pozzo acquedotto (100 m³/giorno)
1 - 10	"Mag 4 Plume"	Pozzo acquedotto (1000 m³/giorno)
10 - 100	"Mag 5 Plume"	Pozzo acquedotto (10000 m³/giorno)
100 - 1000	"Mag 6 Plume"	Flusso di base corso d'acqua di 1.16 m³/s
1000- 10000	"Mag 7 Plume"	Flusso di base corso d'acqua di 11.6 m³/s
10000 - 100000	"Mag 9 Plume"	Flusso di base corso d'acqua di 115.7 m³/s
> 100000	"Mag 9 Plume"	Flusso di base corso d'acqua di 1157.4 m³/s

(da Neville C.J. et al., 2011 modificato)

METODI INNOVATIVI DI INDAGINE PER LA CARATTERIZZAZIONE DI UN SITO CONTAMINATO

METODI DI INDAGINE GEOFISICA

Istituto per la Dinamica dei Processi Ambientali CNR MILANO

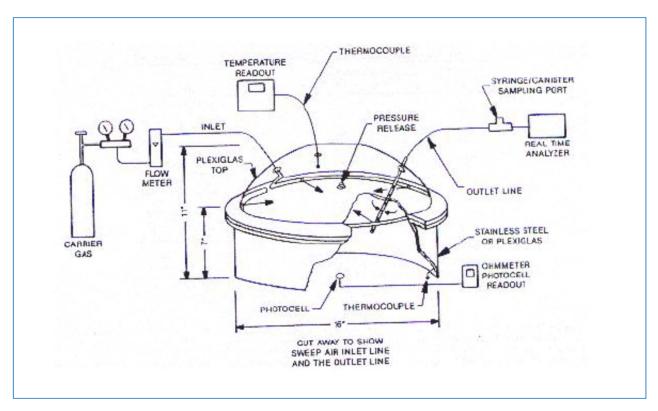

Metodo geofisico di	Finalità in campo ambientale
esplorazione	
Elettromagnetico	Presenza di terreni contaminati, materiali di riporto e rifiuti. Localizzazione
(EM resistivity)	sottoservizi metallici. Collaudo impermeabilizzazione discariche.
Georadar (GPR Ground	Rappresentazioni delle discontinuità presenti nel sottosuolo: naturali
Penetration Radar)	(stratificazioni, cavità) e antropiche (sottostrutture, serbatoi interrati, rifiuti,
	riporti, etc.),
Magnetometria	Informazioni qualitative sulla localizzazione ed estensione di oggetti sepolti
(M Magnetometry)	(come fusti, cavi, , tubi, etc.).
Potenziali spontanei	Informazioni circa i flussi idrici sotterranei e la loro variazione nel tempo
(SP Self Potential)	
Impedenza	Informazioni circa la presenza di fluidi nel sottosuolo e dello stato idrochimico
elettrica/spettroscopia elettrica	(eventualmente influenzato da inquinanti)
(SIP/EIT Electrical	
Spectroscopy / Electrical	
Impedence Tomography)	
Radio-magnetotellurico /RMT)	Uso è limitato alla segnalazione di eventuali strutture nel sottosuolo (tubazioni,
	cavi, etc.)

METODI DI CARATTERIZZAZIONE PER COMPOSTI VOLATILI (VOC & SVOC)

SOIL GAS SURVEY Passivo

Attivo

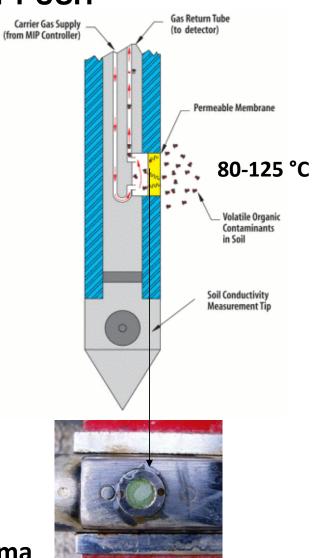
GORE-SORBER®



CAMERA DI FLUSSO

Anche a supporto dell'analisi di rischio (intrusione indoor or outdoor di gas)

METODI DI CARATTERIZZAZIONE DERIVATI DALLE TECNICHE "DIRECT PUSH"


MEMBRANE INTERFACE PROBE (MIP)

Tubazioni e linea del gas

Controllo del sistema

MIP-HPT PROBE (HYDRAULIC PROFILING TOOLS)

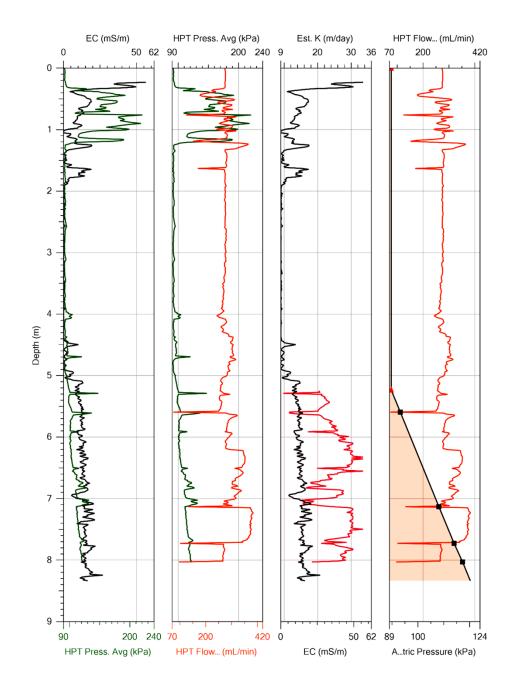
Conducilità elettrica – EC (mS/m)

Alta > argilla Bassa > sabbia - ghiaia

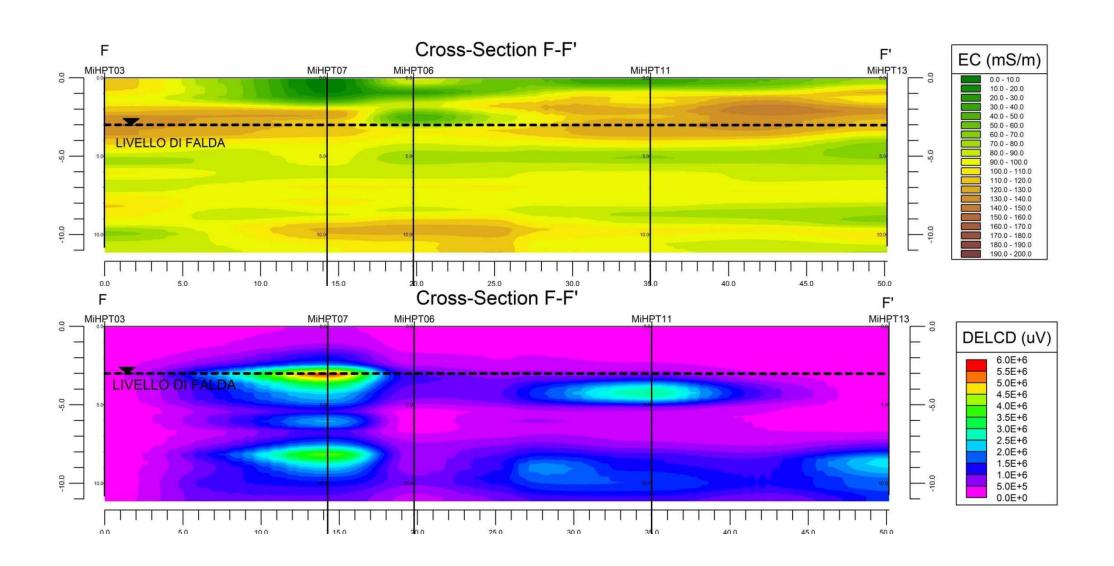
Pressione – P (kPa)

Alta > bassa permeabilità

Bassa > alta permeabilità


Idrostatica > incremento linea di base

Flusso – Q (mL/min) ~ costante


Alto > alta permeabilità

Basso > bassa permeabilità

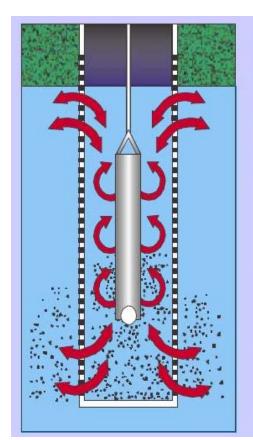
Permeabilità relativa Q/P

ESEMPIO RISULTATI INDAGINE MIP

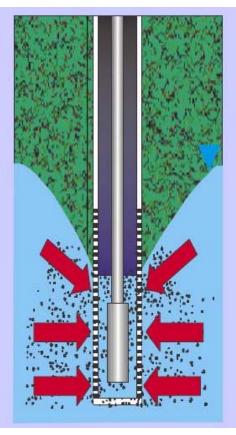
METODI DI CAMPIONAMENTO DI ACQUE SOTTERRANEE CON TECNICA LOW FLOW

In presenza di valori di accettabilità delle acque di falda particolarmente ridotti (µg/l e/o ng/l) è necessario disporre di dati rappresentativi dell'effettivo contaminante disciolto in falda rispetto a quello presente come particolato in sospensione. Può essere adottata la seguente metodologia operativa:

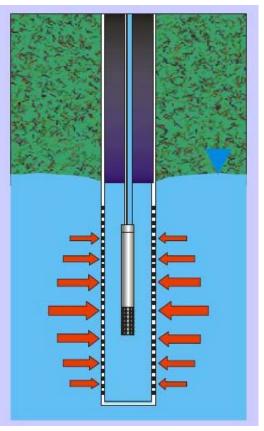
- utilizzo della tecnica "low flow purging" (<0.1 l/min);
- misura della stabilizzazione di pH, Eh e conducibilità elettrica;
- prelievo di acque diretto.



CONFRONTO TECNICHE DI PRELIEVO ACQUE SOTTERRANEE


BAILER

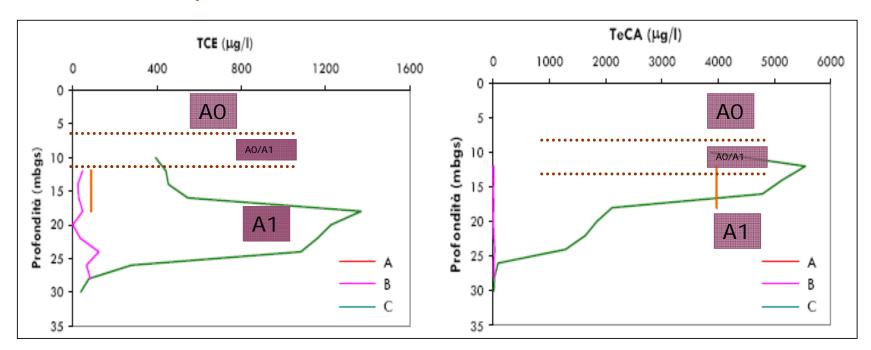
POMPE DI ALTA PORTATA


POMPE LOW FLOW

aumento torbidità aerazione campione

dispersione suolo e contaminanti

controllo torbidità e zona da campionare


tecnica tradizionale

low flow

CAMPIONAMENTO ACQUE

Stratificazione contaminazione Confronto risultati tecniche alternative

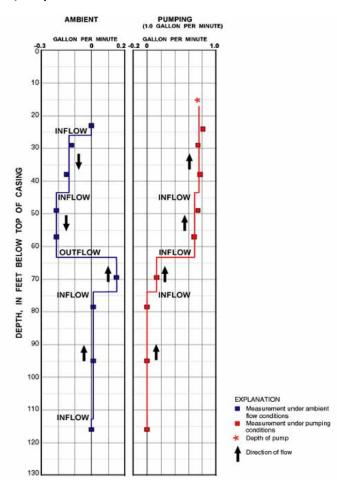
- A) Integrato sulla verticale
- B) Stratificato sulla verticale con sistema MLPS
- C) Stratificato sulla verticale con sistema GeoProbe ®

TeCA: 1,1,2,2-Tetracloroetano TCE: Triclorotilene

Rho (MI) – ex Chimica Bianchi

METODI DI MISURA DI FLUSSI IDRICI VERTICALI NEI POZZI

vertical flowmeter (flussometro)

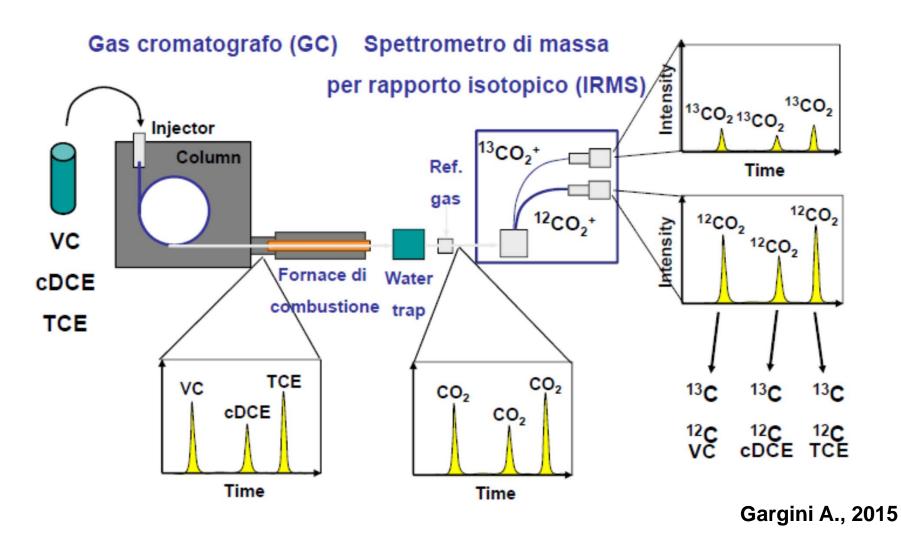

Heat pulse flowmeter (HPFM), Electromagnetic flowmeter (EMFM), Spinner flowmeter

Hea tpulse ad onda di calore:

- 1) Emissione di un'onda di calore
- 2) Acquisizione della temperatura da parte di termistori posti ad uguale distanza dal punto di emissione

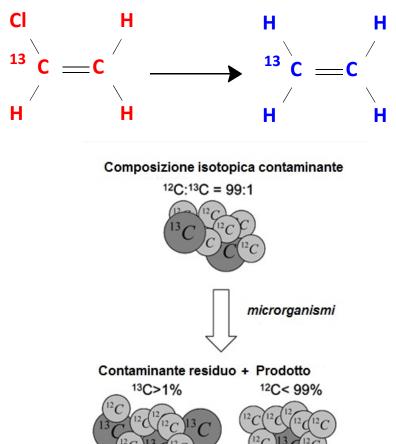
Uso:

- misurare la velocità di flusso verticale;
- identificare la direzione di flusso verticale;
- stabilire gradienti idraulici relativi;
- identificare fratture o unità geologiche trasmissive che sono la fonte di acqua o che potrebbero agire come condotti per i flussi in un foro aperto.

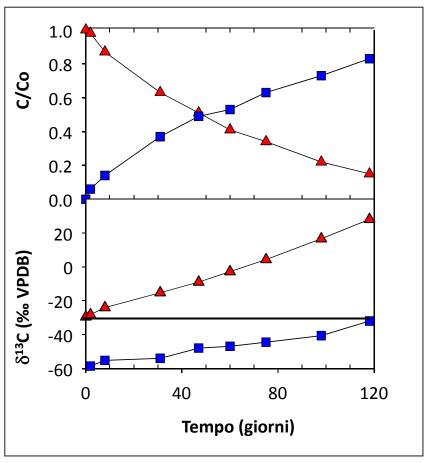


METODI ISOTOPICI

ISOTOPI STABILI DI INTERESSE PER LO STUDIO DELLE ACQUE SOTTERRANEE


Isotopo	Rapporto	%	Standard
² H	² H/ ¹ H	0.015	VSMOW
³ He	³ He/ ⁴ He	0.000138	Atmospheric He
¹³ C	¹³ C/ ¹² C	1.11	VPDB
¹⁵ N	¹⁵ N/ ¹⁴ N	0.366	AIR N ₂
¹⁸ O	¹⁸ O/ ¹⁶ O	0.204	VSMOW
³⁴ S	³⁴ S/ ³² S	4.21	CDT
³⁷ Cl	³⁷ Cl/ ³⁵ Cl	24.23	SMOC
⁵³ Cr	⁵³ Cr/ ⁵² Cr	0.113	SMOC

ANALISI DI ISOTOPI ¹³C/¹²C: Tecnica GC-IRMS



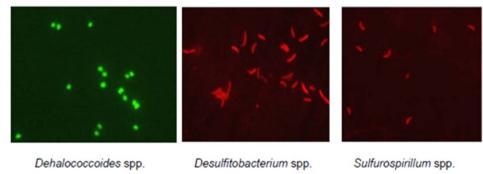
ISOTOPI DEL CARBONIO

Test di laboratorio: dealogenazione riduttiva del Cloruro di Vinile (Co=40 mg/l) a etilene

Hunkeler, D. et al., 2001

ISOTOPI DEL CROMO

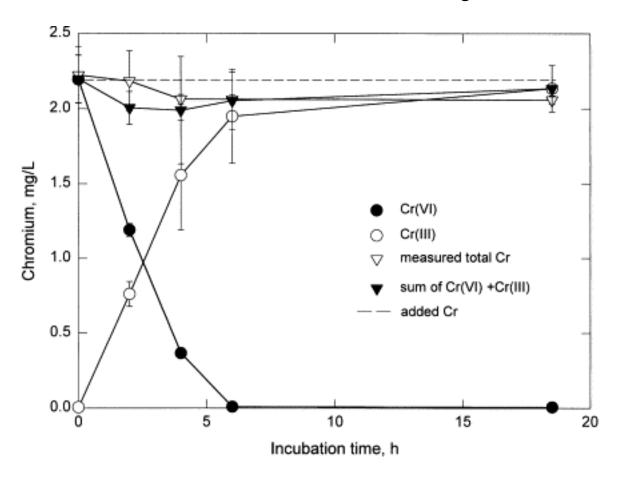
Isotopo	Abbondanza relativa	Tempo di dimezzamento
⁵⁰ Cr	4.35	1.3·10 ¹⁸ anni
⁵² Cr	83.76	Stabile
⁵³ Cr	9.50	Stabile
⁵⁴ Cr	2.37	Stabile

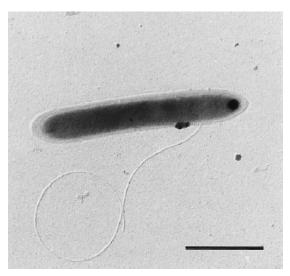

$$\delta^{53}$$
Cr(‰) ={ [(53 Cr/ 52 Cr)_{campione}/(53 Cr/ 52 Cr)_{standard}] - 1}·1000

Arricchimento nell'isotopo pesante in presenza di fenomeni di riduzione da CrVI a CrIII

METODI DI CARATTERIZZAZIONE MICROBICA

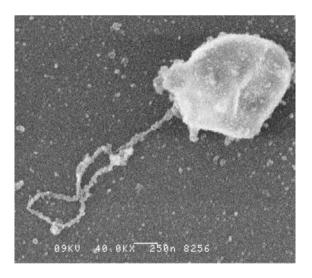
Idrocarburi petroliferi: BACTRAP® - tubo riempito da carbone attivo arricchito in ¹³C e introduzione di microcosmi per valutare biodegradazione (dopo un intervallo di tempo)


Solventi clorurati: PCR (Polymerase Chain Reaction – *estrazione di DNA genomico* FISH (Fluorescent In Situ Hybridization) - *sonde molecolari che si legano a RNA ribosomiale*

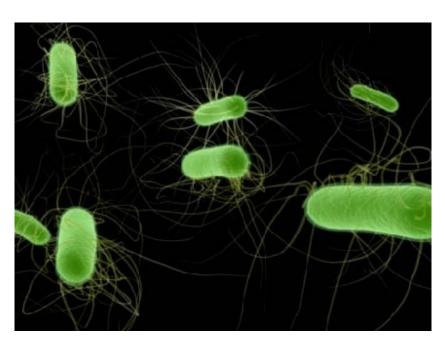

IRSA Monterotondo (Roma)

Test di tossicità - test ecotossicologici che prevedono anche saggi multispecie relativi ad organismi con livelli trofici diversi (manuali APAT-IRSA-CNR, 2003)

Riduzione del Cr(VI) a Cr(III) in cultura anaerobica con 200 mg/l di fenolo Interazione tra *Escherichia coli* e degradatori dei fenoli


Evans N. Chirwa, Yi-Tin Wang, 2000

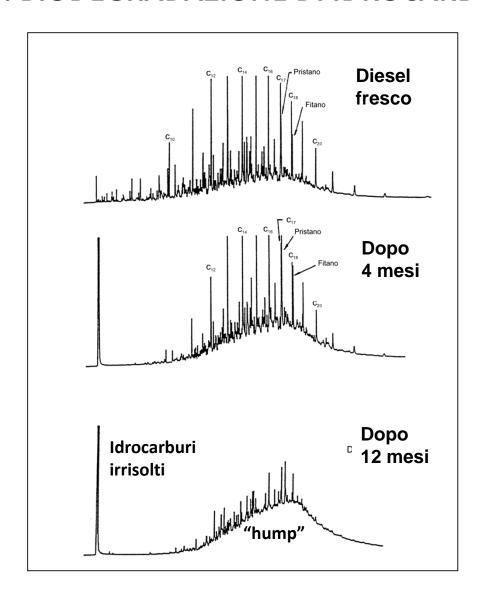
Dehalobacter restrictus


Batteri che intervengono

nella declorazione riduttiva

Dehalococcoides ethenogenes

Batterio che interviene nella riduzione del Cromo esavalente

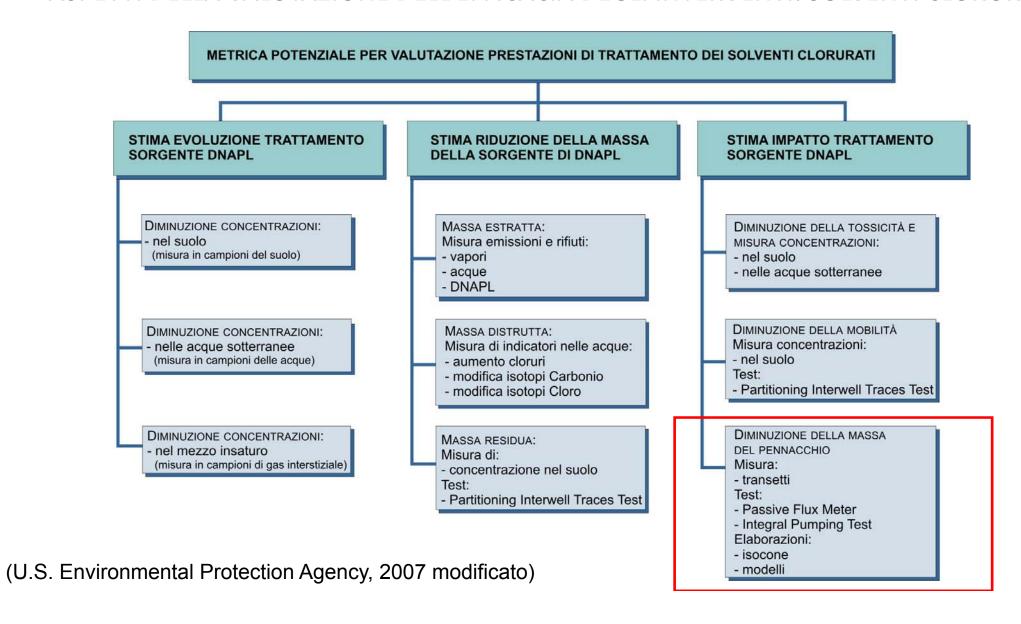


Escherichia coli

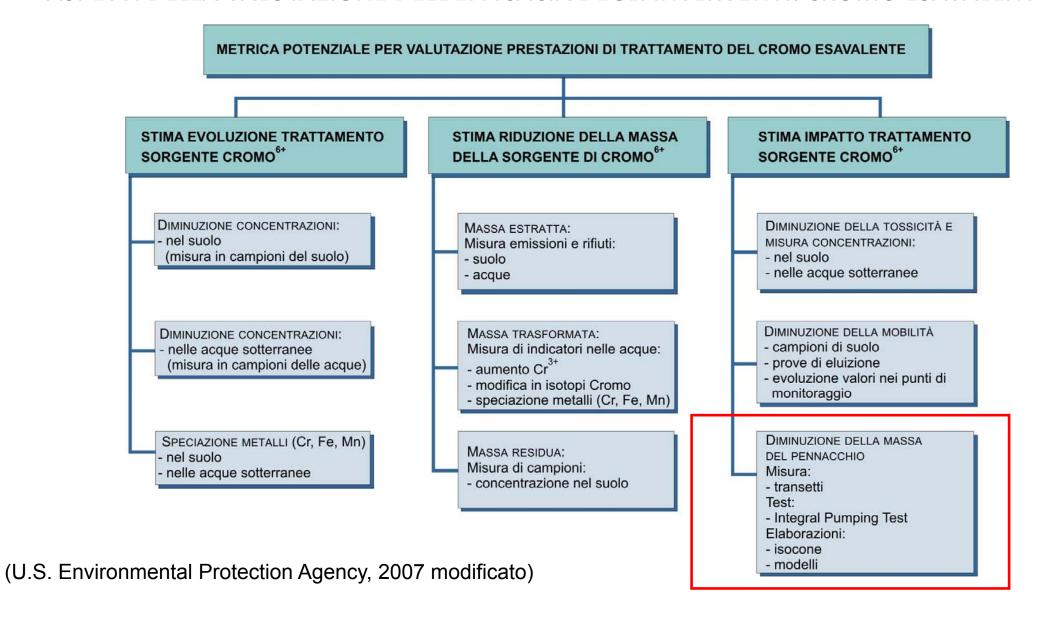
METODI DI FINGERPRINTING: BIODEGRADAZIONE DI IDROCARBURI

GAS CROMATOGRAFIA

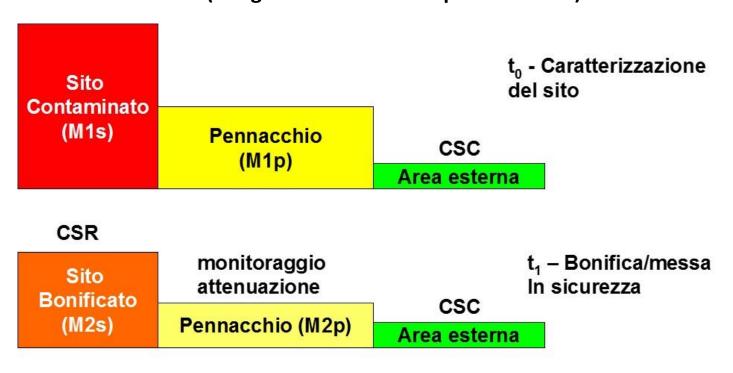
Contaminazione diesel e risalita della "gobba" ("hump")


APPLICAZIONE DEI METODI ALLE FASI DI BONIFICA/MESSA IN SICUREZZA DI UN SITO CONTAMINATO

APPLICAZIONE DI METODI DI CARATTERIZZAZIONE AI COMPLESSI IDROGEOLOGICI LOMBARDI

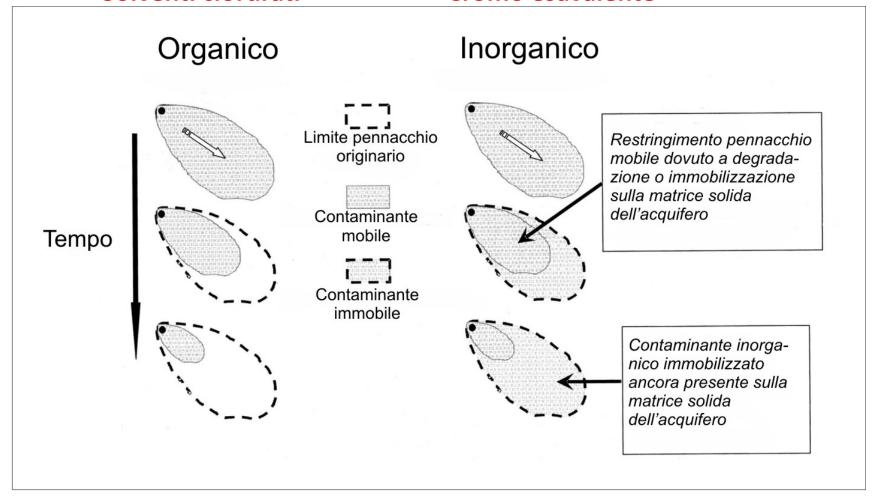

Caratterizzazione	Bonifica/messa in sicurezza
Raccolta dati Ricostruzione del sottosuolo Caratterizzazione del mezzo insaturo Presenza di VOC e SVOC Assenza di VOC e SVOC Caratterizzazione del mezzo saturo Misure del flusso idrico Misure della qualità delle acque Presenza di acquiferi produttivi Presenza di acquiferi poco produttivi Elevate concentrazioni di composti poco solubili Report dei dati	Metodi che intervengono su composti volatili Metodi che intervengono su reazioni in situ di ossidazione o riduzione Metodi che intervengono su reazioni in situ mediate da microrganismi Metodi che intervengono sul monitoraggio dell'attenuazione naturale Metodi che intervengono sull'interruzione della migrazione dei contaminanti

SCENARI DI GESTIONE DEI PENNACCHI DI SOLVENTI CLORURATI E CROMO ESAVALENTE


ASPETTI DELLA VALUTAZIONE DELL'EFFICACIA DEGLI INTERVENTI: SOLVENTI CLORURATI

ASPETTI DELLA VALUTAZIONE DELL'EFFICACIA DEGLI INTERVENTI: CROMO ESAVALENTE

POSSIBILI SCENARI DI GESTIONE DI SITI CONTAMINATI E DI PENNACCHI (integrazione bonifiche-qualità risorse)



COMPORTAMENTO ATTESO NEL PENNACCHIO

Solventi clorurati

Cromo esavalente

Grazie dell'attenzione